
Electron and kinetic energy densities from Dirac's equation for a model semi-infinite

inhomogeneous electron gas

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 5517

(http://iopscience.iop.org/0305-4470/20/16/026)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 15:15

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/16
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 20 (1987)  5.517-5528. Printed in the U K  

Electron and kinetic energy densities from Dirac’s equation for 
a model semi-infinite inhomogeneous electron gas 

R Baltini and N H March 
Theoretical Chemistry Department, University of Oxford, 1 South Parks Road, Oxford 
OX1 3TG, UK 

Received 22 May 1987 

Abstract. Adopting a simple independent ‘particle in a box’ model with a finite square 
barrier, Dirac’s relativistic wave equation has been used to obtain exact results for the 
electron density p and kinetic energy density / in the semi-infinite inhomogeneous electron- 
gas limit. By utilising a suitable power series development, one can pass to the non- 
relativistic limit and subsequently to the limit of an infinite barrier, in which case well 
established results are regained. Finally, the relation to relativistic Thomas-Fermi theory 
is discussed. 

1. Introduction 

The description of a many-electron ground state by its electron density has become 
of major importance for studying the inhomogeneous electron gas as it exists in atoms, 
molecules and condensed matter, following the pioneering work of Thomas (1926) 
and Fermi (1928). This area has by now been extensively reviewed (Banzai and  Deb 
1981, Lundqvist and March 1983, Callaway and March 1984, Dreizler and da  Providen- 
cia 1985). While the range of validity of the original Thomas-Fermi theory is now 
well understood, the same can hardly be said for the relativistic version of that theory, 
due to Vallarta and Rosen (1932), even though it has been extensively applied to 
problems in atomic physics (see, for example, Hill er a1 (1987) and references therein). 

Therefore, it remains of interest to study the theory of the inhomogeneous electron 
gas for simple model systems by using relativistic quantum mechanics. The present 
paper is in this area. Specifically, by considering a simple ‘particle in a box’ model 
(though of necessity now with a finite square barrier), the Dirac one-electron wavefunc- 
tions appropriate for independent particle motion are used to construct (i) the electron 
density p and (ii) the kinetic energy density 1. Explicit relation to the non-relativistic 
limit is then exhibited by allowing the velocity of light c to tend to infinity, after which 
the passage to an infinite barrier limit can be correctly made. Though the full solutions 
for the wavefunctions are available for a ‘box’ of finite length, the main focus here 
will be on the semi-infinite inhomogeneous electron gas in which the ‘box’ length is 
also allowed to tend to infinity. 

Matters discussed on the basis of this admittedly elementary model are ( i )  the 
Friedel oscillations induced asymptotically by introducing a localised potential into 
an initially uniform relativistic electron gas and (ii) the kinetic energy density in relation 

t On leave from the Department of Theoretical Chemistry, University of Ulm, West Germany. 
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5518 R Baltin and N H March 

to the electron density in  the uniform gas case. Using (ii), the relation of the Dirac 
theory to the relativistic Thomas-Fermi theory is exhibited for slowly varying potentials 
introduced into a homogeneous relativistic electron gas. 

2. Eigenspinors and electron density in a one-dimensional finite square-well potential 

The usual one-electron Dirac Hamiltonian H 
H = cazp ,  + V( z) + p m c 2  (2.1) 

is the basis for what follows. (For general references to Dirac’s theory see, e.g., Bjorken 
and Drell (1964) or Rose (1961)). The square-well potential adopted here for V ( z )  is 
defined by 

O < Z S l  
{ O  v,>o z < o o r  z > l  

V(z) = 

the three regions 1-111 referring to z < 0, 0 i z S 1 and z > 1, respectively. a,  and p are 
the customary 4 x 4 matrices 

/ o  0 1 

One wishes to solve Hrl, = E $  for mc2 s E s m c 2 +  V,. 
In region 11, four independent solutions of Dirac’s equation are found to be 

rl,+ = U+ exp(ikz) with U+ = (1,0, g, 0) or (0,1,0, -g) and $- = U- exp(-ikz) with U- = 
(0, l,O, g )  or ( - l , O ,  g, 0) where 

( 2 . 4 )  2 ,  I / Z  0 6 chk = ( E ’  - m 2 c 4 ) 1 ’ 2  = [ 77 ( 77 + 2mc ;] 

and 

using 77 = E - mc2.  
In  regions I and 111 solutions having the same energy and tending to zero as z + -cc 

or z + +a, respectively, are given by rl, = ul exp(rcz) with uI = (0, 1,0, iy) or ( - l , O ,  iy, 0) 
(region I )  and CC, = u I I I  exp(-rcz) with u l l l  = (1,0, iy, 0) or (0, l,O, -iy) (region 111). 
Here we have put 

O S  C ~ K  = [ m 2 c 4 - ( &  - V , ) * ] I ’ ~  

= [( V,- 77)(2mc2- v,+ 77)]”’ 

and 

Imposing the condition of continuity of rl, at the boundaries between regions 1-111 
leads to the secular equation for the allowed energy levels: 

2 y  cos(kl)+(y2/g-g)  sin(kl) = O .  (2.8) 
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The current component j ‘  given by 

j z  = c $ + a Z + =  ~ ( $ T ( L ~ + $ : ( c I I - + T $ ~ - $ L ~ * ( L ~ )  ( 2 . 9 )  

is evidently continuous at the boundaries if the spinor components are. This is different 
in non-relativistic Schrodinger theory where current components also involve first-order 
derivatives of the wavefunction so that continuity of slopes has to be imposed on $ 
as another independent condition to make j ’  continuous. On the other hand, the Dirac 
spinors have discontinuous slopes as must be expected because the jump of the potential 
has to be compensated in the Dirac equation being of first order. 

The solutions 7 = v,,, n = 1 , 2 , 3 , .  . . of equation ( 2 . 8 )  are lying between 0 and V,, 
where V, has to be restricted to OS V o S  mc2.  For Vo> mc2 unphysical features will 
occur, e.g. increasing K (corresponding to stronger falloff of +) when the energy 7 is 
raised, or even imaginary values of K are possible for V, > 2mc’. These peculiarities 
are special effects of the Klein paradox. 

Since in the non-relativistic limit c + 03 

the secular ( 2 . 8 )  is readily shown to reduce to the well known non-relativistic form 

(2.1 1) 

2.1. The limit of infinite ‘box’ length I 

Below we shall focus primarily on the semi-infinite inhomogeneous electron gas, 
corresponding to the ‘box’ length I tending to infinity such that the number of electrons 
per unit length, referred to below as the ‘electron density’, remains finite. For very 
large I ,  equation ( 2 . 8 )  has solutions 

k = k, = rrn/ l  n = 1 , 2 , 3 , .  . . (2 .12)  

independent of V,, and correspondingly 77 can be found to have the allowed values 

7 = 7, = [ m 2 ~ 4 + ( ~ h r r / I ) 2 n 2 ] ’ / 2 - m c 2 .  (2 .13)  

For c + 03, v,, + fh2 .rr2n2/ (  ml’) as required. 

solutions: 
The final results for the eigenspinors are that there are two independent degenerate 

(2 .14)  
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and 

0 
cos( kz) + ( y / g )  sin( kz) 

-ig sin( kz) + i y  cos( kz) 

(2.15) 

Here O(z) denotes the unit step function. e(z)O(l-  z )  = 1 if O s  z s I and is zero 
otherwise. + ( I )  and +(" differ by their spin, which is +; and -1 ,  respectively, in the 
z direction. 

It turns out that for the normalisation factors D ,  = D2 = C, say, where for large I 
one finds 

(2.16) 

2.2. Electron density p(z, 7 F )  in the limit 1 tending to infinity 

We turn to the first aim of using this box model, namely to calculate the electron 
density as a function of z and  the Fermi energy qF in the limit as the 'box' length 1 
tends to infinity. The density p(z, N )  including levels n = 1 to N is evidently 

(2.17) 

For /+a one can replace 4:) by +"'(z, 77) being a smooth function of energy 77, 
and consequently one can write 

an 
P(Z,  IF) = - [+("+(z, ~ ) + ( " ( z ,  v)+ +"'+(z, v)+'*'(z, 7711 dv .  ,,=, 377 

(2.18) 

Solving equation (2.13) for n and differentiating with respect to q- yields 

(2.19) 

and evidently 1 cancels against the length in C', = C 2 ( ~ )  in (2.16). The contributions 
of 4"' and + ' 2 )  to the density are the same, and it follows that 

x {e(-z)( 1 + y 2 )  e*"'+ e(z)e(1-z)[(cos(kz)+ ( y / g )  sin(kz))2 

+( y cos(kz) - g  sin( kz)I2]+ O(z - I )  e x p [ 2 ~ ( l -  z ) ] ( l+  y')} d 7  (2.20) 
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where the contents of the curly brackets in (2.20) will be denoted by R(z, k )  below. 
Changing the variable of integration from 77 to k yields from (2.20) the result 

(2.21 j 

where W ( k j  = [ m ' ~ ~ + ( c h k ) ~ ] ' ' ' .  

some algebra that 
Focusing attention on the density inside the box, i.e. in region 11, one finds after 

where U = Vo/(2mc2) s f .  
Finally, it is useful to transform to dimensionless variables 

r = hk/ mc rF= hk,/mc ( = ( m c / h ) z  

when one finds the exact limiting electron density for large i to be 

(2.22) 

(2.23) 

(2.24) 

with 

w 3 (1 + 7 2 ) 1 ' 2 .  (2.25) 

Further evaluation seems presently possible by expanding the square roots when 
T ~ < <  1 and T:<< 2u.  One then finds that the integrations can be performed to yield, 
with 5 = 2kFz = 2TF5, 

(2.26) 

To pass to the non-relativistic limit it is useful to introduce A = TF/ Vo= h2k:/(2mV,), 
whence it follows that u = ~ : / ( 2 h ) .  T ; < < ~ U  then corresponds to A < < $  and u s $  
corresponds to T ~ S  2A. Then the non-relativistic limit c + CO corresponds to T F +  0, 
when one finds 

2kF 
P;;( z, kF) = -{ 1 - j o (  5) + 2~ "'jI ( 5) + 2~ [ j o (  E )  - (21 O j l (  5) I 

?r 

- A "'[jl(5) - (2/5)j2(5)1 + O(A')}. (2.27 j 

The first two terms on the right-hand side of (2.27) give the usual expression for the 
density for a particle in a 'box' with infinite walls. The 'wall' at z = 0 induces long-range 
Friedel oscillations of wavelength i r / k F  in the initially uniform density 2 k F / r s  p,. It 
can be seen from (2.26) that the oscillations remain of the same wavelength when 
relativity is included. 
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Having accomplished the first objective of calculating the electron density of this 
semi-infinite inhomogeneous electron gas from Dirac's equation, the results being given 
in equation (2.24) and its power series development (2.26), we turn to the second aim, 
namely to calculate the kinetic energy density for this model. 

3. Kinetic energy density in the limit 1 + 00 

The kinetic energy density associated with a single spinor in the present one-dimensional 
case can be written 

t+L(z) = $'b) T$(z )  (3 .1 )  

where T is to be taken as the free-particle Dirac Hamiltonian minus the rest-mass 
energy, i.e. 

(3.2) T = H " ' -  mc'l = cazpz + mc2( /3 - 1 )  

where 1 denotes the 4 x 4  unit matrix and H'O' is given by equation (2.1) with V ( z )  
put equal to zero. 

Since eigenstates of H will be employed, one finds immediately that 

f + ( z )  = + + ( z ) [  H - V ( z )  - m c ' l ] $ ( z )  

= [77 - V(Z)l$ '$ .  (3 .3 )  

Therefore the sum over states differs from that in (2.20) merely by the introduction of 
an additional factor r] or r] - V, in the integrand depending upon whether z is in 
region I 1  or not. Using k as the integration variable, with r] = W(k)  - mc', yields 

?( Z,  kF) = - ( W - m c 2 -  vOv) ) R ( z ,  k)k2 d k  

where v = 0 for z E [0, I ]  and 1 otherwise. 
Again restricting attention to region I 1  one can write 

t l l  ( z ,  kF) = thomo( kF) + ?Os'( z, kF) 

with the homogeneous part given explicitly by 

(3.4) 

(3.5) 

f h o m o  [ W(k) - mc'] d k  

We will return to this expression below. However, to complete the evaluation of 
fI l (z ,  kF) one has the oscillatory part in (3.5) as 
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Again using dimensionless variables, equation (2.23), we obtain 

COS(275)(0 - 1 ) ( T 2 / W  -2V) dT 
Trh v 

0 - 1  +l: 7 s i n ( 2 7 ~ ) - [ 1 - ( ~ - 2 v ) ~ ] ” ~ d ~  
W 

(3.8) 

As in equation (2.26) these integrals can be done approximately by expanding the 
roots under the conditions T ~ < <  1 and, at the same time, &<< 2v. To be consistent, the 
homogeneous part, though integrated exactly, is also expanded so that we find for the 
total kinetic energy density 

3Tr 
t,I(Z, k F )  =- 1 -&‘Ti.- 3[j, - (2/[)jl] + 3 

where the spherical Bessel functions j ,  are to be taken at 5 = 2kFz. 

by the c-free parameter A already used. For c + 00 one then obtains 
To perform the non-relativistic limit it is again convenient to express v by T F  and 

+ 6 A [ j o -  ( 4 / 0 j I  + (8/t2)j21 -3A3”[jI - ( 4 / t ) j 2 +  (8/t’)j31 +O(A2)}. 
(3.10) 

Only after c + 00 is i t  possible to let Vo+ cc which corresponds to A + 0, the result being 

(3.11) 

4. Relation to relativistic Thomas-Fermi theory 

This is the point at which we want to bring the predictions of Dirac theory into contact 
with the relativistic Thomas-Fermi theory. In this latter theory, one writes an equation 
for the chemical potential p of the electronic charge cloud in the inhomogeneous 
relativistic electron gas as 

p =(c2p :+m’~4) ‘ /2 -mC2+ v (4.1) 

where pF is the Fermi or maximum momentum at the specified position in the electronic 
cloud while V is the potential energy at this same position. 

Returning to the Dirac theory of $ 5  2 and 3, consider the constant part of both p 
and t. By elimination of the Fermi wavenumber k, one finds in this homogeneous 
limit the relation 

t ( p )  = a{bp[(l+b’pp’)”’-2]+In[bp+(1+b2p2)”’]} (4.2) 

a = mc2( mc/  h ~ r )  b = hn/2mc. (4.3) 

where the superscripts ‘homo’ are omitted henceforth. The constants are given by 
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According to the derivation given in $ 9  2 and 3 the range of validity of equation 
(4.2) seems to be restricted to the interval 0 s  T ~ =  bp 1. However, as far as the 
homogeneous parts of p and f are concerned, equation (4.2) may be alternatively 
derived from the Dirac equation using periodic boundary conditions in a space with 
the potential being zero everywhere. This is shown paradigmatically for the three- 
dimensional case in $4 .3 .  In the absence of any potential, no restriction of the range 
of bp can arise so that, in summary, one can state that equation (4.2) is actually valid 
for any homogeneous density. 

It is of interest, first of all, to consider the ratio of f (  p )  given for a homogeneous 
relativistic electron gas in equation (4.2) with its non-relativistic limit tnr (  p )  given by 

which is easily verified to result also from equation (4.2) in the limit c + 03. The ratio 
f (  p )  = t (  p ) /  tn r (  p )  is plotted in figure 1. 

4.1. Variation principle corresponding to Euler equation (4.1) 

It is now a straightforward matter for the non-interacting particle case treated exclu- 
sively in the present study based on the Dirac equation, to construct a variation principle 
having equation (4.1) as its Euler equation. Thus we write for the ground-state energy 
E (with rest-mass energy not being included) for the inhomogeneous relativistic electron 
gas of density p (  z), with non-uniformity induced by a one-body potential energy V (  z),  

r r 

E = t (  p )  d z +  p (z )  V(z) dz  = T +  U (4.5) J J 

0 .1  0.2 0.5 1 2 5 10 20  50 100 

b9 

Figure 1. Rat io f (  p )  = f ( p ) / r n r (  p )  where f (  p )  is the relativistic kinetic energy density for 
the homogeneous electron gas of density p in one  dimension, equation (4 .2) .  fn r (  p )  is the 
non-relativistic limit, equation (4.4), of I (  p ) .  
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and hence, introducting as usual I-( as the Lagrange multiplier taking care of the 
normalisation condition, 

p ( z )  dz  = N (4.6) 5 
through the minimum principle 

S ( E  - p N )  = 0 (4.7) 

p. = ST/Sp(z )+  V(z). (4.8) 
Calculating the functional derivative using equation (4.2) is easily shown to lead back 
to equation (4.1). 

one finds 

4.2. Generalisation to d dimensions ( d  = 1 ,  2 , 3 )  

In d dimensions, the phase space relation p ( z )  = 2 k , ( z ) / r  is replaced by 

P(Z) = CdPdF(Z) (4.9) 
with Cd = 2rd”/[T(;d + l )hd] .  This can clearly be combined with the chemical poten- 
tial equation (4.1) to yield the Euler equation of the relativistic Thomas-Fermi theory 
in d dimensions (March 1985). 

One can now attempt, therefore, to set up the analogue of equation (4.2), valid for 
d = 1 ,  and for d = 2 and 3 as well. 

When pF is eliminated in equation (4.1) by use of equation (4.9) and when the 
resulting equation is identified with an Euler equation (4.8) it follows that 

- [c’( p /  C, )”“ + m2c41i i2  - mc2 (4.10) Td 
6P 
_- 

where Td is the kinetic energy of the electron gas in d dimensions. 

it follows that 
Since the right-hand side of equation (4.10) does not contain any derivatives of p 

S T d / S p  = dtd /dp  (4.11) 
with td being the kinetic energy density in d dimensions. 

From the last two equations it readily follows that 

t d ( p ) =  ( [ ~ ’ ( P / C ~ ) ” ~ + m ~ c ~ ] I ’ ’ - m c ~ } d ~ .  l 
Changing to the integration variable U = ( G/Cd) ”d  yields 

(4.12) 

(4.13) 

where pF( p )  is given by equation (4.9). 

(4.2) for d = 1, and by 
The integrals (4.13) may be solved exactly, the result being given again by equation 

t z ( p ) = a 2 [ ( l +  b 2 p ) 3 ’ 2 - i b 2 p -  1 3  (4.14) 
t , (  p )  = a 3 { b 3 p ” 3 ( 4 +  b:p2”)(l + b : p 2 ’ 3 ) i ’ 2 - $ b : p  -4 In[b,p”’+( 1 + b:pZ’’)”2]} 

(4.15) 



5526 R Baltin and N H March 

with constants 

1 
a 2 = - ( y ) 2 m c 2  37r b2 = 2 ~ (  h / m ~ ) ~  

and 
3 1 

47T 
a =?(?) mcz b3= ( 3 7 ~ ~ ) ” ~ ( h / m c ) .  3 -  

(4.16) 

(4.17) 

The non-relativistic limit o f t ,  has already been quoted, equation (4.4). In the cases 
d = 2 and d = 3,c + CO leads to the correct non-relativistic Thomas-Fermi expressions 
from equations (4.14) and (4.15): 

t;r( p )  = (7rh2/2m)p2 (4.18) 

(4.19) 

Expressions (4.14) and (4.15) are valid for arbitrary homogeneous densities p. This 
is confirmed from Dirac’s equation for d = 3  in the following subsection. 

4.3. The homogeneous electron and kinetic energy densities from Dirac’s equation in three 
dimensions 

This last subsection is to provide us from Dirac’s equation with an independent 
derivation of results already obtained from the variation principle of § 4.2. It will be 
sufficient to consider, as a paradigm, the three-dimensional case. 

Dirac’s Hamiltonian for a free electron in three dimensions is given by 

(4.20) 

mez 0 CP: c(  P Y  - iP, ) 
0 me- C ( P X + i P , )  -cp: 

cp2 c(p , - ip , )  -me2 0 I CiP,+iP,)  -0: 0 

H‘” = c (  a * p )  + pmc2 = 

( p  = -ihV). It is then readily verified that 

(4.21) 

is an eigenspinor of H‘”’ having its spin parallel to k. The energy E and the function 
g satisfy equations (2.4) and (2.5), respectively, however, now with k = ( k t  + kt  + k;)’’’. 
The expressions q* are defined by q Z  [ h (  k * k Z ) ] ” *  and e“ is a phase factor equal 
to ( k , - i k , ) / ( k ~ + k f ) ” ’ .  

The normalisation constant Dk and the level density may be determined after 
periodic boundary conditions 

$ k , ( X + R ) =  $ k t ( X )  (4.22) 

have been imposed on $. The volume of periodicity is chosen to be a cube with side 
length I eventually tending to infinity, and R = (m,l, m, I ,  m z l )  with m,, m , ,  m, being 
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integers. As in non-relativistic theory, it follows from equations (4.21) and (4.22) that 
k has to be quantised, k, = 2rn,/l, j = x, y, z, with n, being integers. 

Normalisation of $kT over the volume I ) ,  

yields 

(4.23) 

(4.24) 

From the quantised values of k, the density of states in k space is obviously given 
by ( 1 1 2 ~ ) ~  so that the number dn of states contained in a spherical shell of radius k 
and thickness d k  is 

dn = ( 1 / 2 ~ ) ~ 4 r k ~  dk. (4.25) 

Spinors $ k J  having the same energy differ from $ k t  by components (-e”+, q+ , e ’’ gq-9  
-gq+) yielding the same contribution to densities, namely 

(4.26) $:T $kf = $:l $ k l  = 1 - 3  

so that, from (4.25) and (4.26), it follows that 

= k:/3r2 

and 

(4.27) 

1 mc ’ - --mc’(h) {7F(++ 7:)(1+ 7:)’/2--t In[.r,+(l+ 7:)’/21}- mc2p 
4 r 2  

(4.28) 
which leads us back to equation (4.15) when rF= h k , / m c  is eliminated by use of 
equation (4.27). 

5. Summary and conclusion 

The main results of the present study of the ‘particle in a box’ model are as follows. 
(i) The electron density p ( z )  as given by equation (2.24). This can be evaluated 

by a power series expansion as in equation (2.26) and ( a )  the non-relativistic limit 
c+co  taken and ( b )  subsequently the infinite barrier limit V,+OO. The usual ‘box’ 
density 

is then regained. 
(ii) The long-range Friedel oscillations induced by a localised ‘perturbation’ in an 

initially homogeneous relativistic electron gas have wavelength r/ kF as in the non- 
relativistic limit. 
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(iii) The kinetic energy density t ( z )  has the exact form (3.5), (3.6) and (3.7), which 
expands again to yield the known non-relativistic result in the subsequent passage to 
the infinite barrier limit. 

From the homogeneous electron-gas results implicit in equations (2.24) and (3.6) 
for p ( z )  and t ( z ) ,  respectively, the variational principle (4.7) with total energy E given 
in terms of p ( z )  by equations (4.5) and (4.2) follows. 

Moreover, combining relation (4.9) between p and the Fermi momentum pF in d 
dimensions (March 1985) with the chemical potential, equation (4.1), one obtains an 
equation which, when identified with an Euler equation, allows for determination of 
t, for the homogeneous gas (see equations (4.13)-(4.15)) merely by an integration. 
On the other hand, these expressions for td may also be easily derived from the 
free-particle Dirac equation as is shown in PS 4.3 for d = 3. 

Needless to say, while the functional relationship between the kinetic energy density 
t and the electron density p can be derived as in equations (4.2), (4.14) and (4.15) for 
the homogeneous relativistic electron gas, no such derivation is, of course, possible 
from the simple model of an inhomogeneous electron gas presented here. Nevertheless, 
this model problem does serve to clarify some points as to ( i )  the derivation of kinetic 
energy density of an inhomogeneous electron gas and (ii) it appears possible with this 
model to make useful progress on the extension to d = 2 and 3 dimensions which has 
already been worked out in the infinite barrier limit of the semi-infinite inhomogeneous 
electron gas in non-relativistic theory (March 1987). 
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